
AD-A093 261 VIRGINIA POLYTECHNIC INST AND STATE UNIV WASHINGTON'-ETC F/S 9/2

FILES IN AN INTERACTIVE ENVIRONMENT.IU)
APR 80 R j ORGASS AFOSR-79-0021I

UNCL ASSI/FIEK-OP /S3 O AFOSRTR80- 1289NL

AFOSR . 8 0 - 8 289

VIRGINIA POLYTECHNIC INSTITUT E AND STATE UNIVERSITY

DEPARTME.NT OF COMAPUTER. SCIENCE P. 0. Box 17186
GRADUATE PROGRAM IN NORTHERN VIRGINIA V~rhingm D. C 2M]4

(7031) 471-4600

LEVEL _
FILES IN AN INTERACTIVE ENVIRONMENT*

0Richard J. Orgass

Technical Memorandum No. 80-3

April 1, 1980 DT~ICSELECTk.. mp

SUMMARY F

A well designed file system can significantly simplify
the design of and increase the reliability of interacttve
programs. A summary of the specifications of a convenient
file system that is substantially independent of the host
operating system and some experiences using the system are
described.

Key Words: file systems, interactive systems

* Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, under Grant No.
AFOSR-79-0021. The United State Government is authorized

"LA. to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation hereon.

Approvod for pubLiO r$1o so
dstirrbuonWunlimet ed. .]

~Located at Dulles uMenational Airport--,0 West Servic Road

71

Copyright, 1980

by

Richard J. Orgass

General permission to republish, but not for profit, all or
part of this report is granted, provided that the copyright
notice is given and that reference is made to the publicationH(Technical Memorandum No. 80-3, Department of Computer
Science, Graduate Program in Northern Virginia, Virginia
Polytechnic Institute and State Univeristy), to its date of
issue and to the fact that reprinting privileges were granted
by the author.

,r

SE CURI TY CL ASS I 0OF TN IiP60

17 -READ 1NSTkV?!TtONS
S REPORT DOCUMENTATION PAGE tIIEFORE COMPLETING, FORM_

FILES IN ANINTERCTIVEENVIRONMEN

7. AIIUT O N STTMNao.t~ eot

ARove or pu0 i reese isrbuin nimtd

9S SURFOEMINGTORGNIZOT AEADADESS0 RGA LMET RJC.TS

JI-

Air F~Y RSonrc e Orric e ef intifcsr Rand h /dNtMf b lc number)r"80

folig sAFBem, Wsingatin, D.Cys 032temsLMROFPAE

14 MNcreslk. thENC relAbili& ofDE interacivre p rmCnroigs Afie sumar SEUIYCAof ths pitca

UNCLASS I IED E
SECURIT 15a CL DPC A SSI FI ATN DOWN GRA*flDINGS~.

C .- .SCHEDULE-

FILES IN AN INTERACTIVE ENVIRONMENT

Introduction

This writer has observed both in his own work and in the
work of colleagues that one's willingness to provide a convenient
interactive program is severely limited by the capabilities of
the file system of the host computing system. If it is straight-
forward to provide many user conveniences, one is happy to do so
but if complicated and tedious coding is required there is a
strong temptation to cut corners at the expense of flexibility
and convenience for users of the program.

For example, when using TOPS-10 which provides a very
convenient file system with a few limitations, one tends to write
programs that exploit the existing file system and leaves the
limitations to be dealt with by the user. In contrast, in the
VM/CMS environment, almost all file operations are reasonably
difficult and there is a strong tendancy to leave almost every-
thing to the user of a program and the result is programs that
are very hard to work with. This difference in file systems was
forcefully brought to the writer's attention when he moved a num-
ber of large interactive programs that were designed for use with
TOPS-10 to VM/CMS.

When these programs were first moved, they were modified
to simply bring them into operation in the new environment. When
this task was completed, two observations were made: (1) A fair
body of terribly uninteresting tedious code had been introduced
into the programs. (2) It was very much more difficult to use
the programs -- there were many more details left to the user and
many small errors caused the loss of a significant amount of work
during a terminal session. In addition, the need to deal with
these details interfered with the work for which the programs
were designed.

The second observation motivated yet additional program
modifications to simplify the use of the programs and the result
was programs that were so complicated that they were neither
reliable nor amenable to further modification. Yet, the user
interface still had annoying properties.

DTIC TAB fl
Unannounced 53
Justification

Distribution/I Availability Codes

Avail and/or
Dibt r Special

-L-#

This state of affairs motivated the construction of the
file system described here. The system was designed by imple-
menting several prototype systems and using these systems to iso-
late further problems and to remove unnecessary attributes of
files that had been introduced because they appeared to be use-
ful. The final version provides for the easy implementation of
very convenient programs with essentially no coding to deal with
the files.

Assumptions

It is assumed that the host operating system provides
some form of a directory of a user's files and that this direc-
tory associates a file name with each file in the directory.
Input/output devices (e.g., terminals, line printers, readers,
tape drives, etc.) have distinguished file names associated with
them. The directory may also contain detailed information about
the organization of the file which is needed to read the file;
this information should be of no concern to either the programmer
or the user of a program. Lastly, the file name that appears in
a directory is also the name by which the file is known to a run-
ning program. [This requirement does not impose any restriction:
If different files are to be processed in different executions of
a program, these file names can be read from the terminal or from
some other device.]

A terminal serves as both an input file and an output
file and in this respect it is indistinguishable from other
files. However, terminal input is typed by a user and output is
often written to CRT terminals and, therefore, effective use of
an interactive program requires additional capabilities for ter-
minal files to make a user's task easier. For example, it should
be possible to record user input in a disk file so that on subse-
quent executions of a program this earlier input can be read from
the file followed by new user created inputs without requiring
program modification or complicated terminal dialogs. Similarly,
it should be possible to record terminal output in a disk file so
that a record of the output is available for later review using
an editor or for further processing.

There are unpublished studies which indicate that using
tab characters can increase the effective data rate of a terminal
by 50% and, in some file organizations, reduce the required stor-
age space by 50%. Therefore, tabs are to be be used for
input/output whenever this is compatible with the device. A pro-grammer need not deal with these tabs at all: They are to be
expanded into blanks on input and automatically inserted on out-
put. In this kind of an environment, one step in the login
procedure is to inform the operating system of the presence or
absence of hardware tabs on the terminal.

-2-

---------------.

File Objects

For a programmer, a file object is an abstract data type
with procedure and data attributes. The data attributes of a
file object include the name of the external file, the record of
the external file that is currently being read or written and the
position in this record of the next character to be read or writ-
ten. The procedure attributes include procedures to open and
close the external file, to transmit a record between the one
record buffer and the external file, to test for end-of-file,
and, possibly, procedures to transmit data to various types to or
from the one record buffer. Such a file object is used as fol-
lows:

When a file object is created, the name of the external
file is passed as a parameter. Next, the external file is opened
and the one record buffer is created. After this, records are
transmitted between the external file and the program via the one
record buffer. Finally, after data transfer is completed, the
external file is closed. If the file should be opened again,
reading or writing begins with the first record of the file and
in the case of an output file the original contents are dis-
carded.

This view of file objects is essentially the view adopted
in SIMULA-67 . In the following sections, extensions to this
view which include additional capabilities and error recovery are
described.

Input Files

While using an input file object to read an external file
a number of user or programmer errors may occur and run time
error recovery to include at least the following is required.

If the file name that is passed to an input file object
when it is created is not the name of an existing file then a
corrective message is printed on the terminal and the user is
asked to provide the correct file name, possibly after consulting
the directory.

If there is an attempt to open an already open file, a
corrective message is printed on the terminal and the user is
given the option of continuing or terminating execution.

If there is an attempt to read from an external file when
the file is closed, a corrective message is printed on the ter-
minal and the user is given the option of either opening the file
and continuing execution or terminating execution.

-3-

During an input operation, if the next record of the
external file is longer than the provided input buffer, a correc-
tive message is printed on the terminal and the user is given the
option of extending the input buffer or terminating execution.

If there is an attempt to close an already closed file an
advisory message is printed on the terminal and execution contin-
ues.

The action taken on an attempt to read past an end-of-
file is determined by the value of a boolean attribute, divert,
of an input file object. If divert is false, then a corrective
message is printed on the terminal and the user is given the
option of rereading the file or terminating execution. On the
other hand, if divert is true, then an advisory message is
printed on the terminal and subsequent reads from this file are
read from the terminal without providing an end-of-file indica-
tion to the program. Note that if divert is true, then terminal
input becomes an automatic extension of any input file.

In some cases, it is desirable to reproduce on the ter-
minal input read from an external file other than the terminal as
records are read from the file. This is particularly useful when
the data read from a file creates the environment in which a user
interacts with the program. The boolean attribute echo of an
input file object provides this capability. If echo has the
value true, then the above copying to the terminal occurs and if
it is false this copying does not occur.

Input file objects have an output file object log as an
attribute. All lines read from the external input file are
copied to the external file associated with the log. If log is
the empty output file object, then this copying does not occur.
This attribute of an input file object makes it straightforward
to create files containing terminal input.

Finally, some small details that make input files associ-
ated with the terminal much easier to work with during program
execution. If a user simply enters carriage return when input is
expected, this input is interpreted as an empty line of input and
not as an end-of-file. An input line whose first character is a
control character serves as an end-of-file from the terminal. In
addition, a second control character appearing as the first char-
acter of an input line terminates execution of a program. Imple-
menting this convention in the CMS environment, removed about 30%
of all user input errors and substantially simplified many pro-
grams.

-4-

Input Streams

The record oriented input file objects described above
are adequate for many applications but they quickly break down
when one wishes to consider a file as a sequence of characters.
While it is certainly possible to write code to read a file as a
sequence of characters, one then has two kinds of objects that
are strings of characters: input files interpreted as character
strings and program variables that are strings of characters
(text objects). If a program processing these two kinds of char-
acter strings is obliged to distinguish between them, the program
quickly becomes cluttered with a wide variety of terribly unin-
teresting and complicated code which provides many opportunities
for small errors. Both the reliability and comprehensibility of
such code is severely compromised because irrelevant details have
not been suppressed by the programming environment.

This problem disappears if the environment provides an
object that may be interpreted as a string of characters indepen-
dent of the source of the characters. One wishes to distinguish
between the source of the characters when the object is created
but when working with the object, there is no need to know the
source of the characters. Objects of type stream appear to meet
this requirement quite well.

When a stream is created, two parameters are passed: a
text object and a boolean. The second parameter provides an
interpretation of the first parameter as follows: If the second
parameter is true, then the value of the first parameter is
interpreted as the name of a file and this file is the source of
characters. On the other hand, if the value of the second param-
eter is false, then the first parameter itself is the source of
characters.

Stream objects have some of the attributes of text
objects and some of the attributes of input file objects. Since
a stream may be associated with an external file, it must be
opened and closed as an input file object and it must be possible
to test for end-of-file. Characters are read from a stream using
the primitives appropriate to a text object since these are clo-
ser to the concept of the object. This implementation of a
stream provides considerable simplification of programs but there
are some obvious generalizations.

One quickly discovers that a stream is much more conven-
ient than an input file object but one quickly creates programs
where there is a need to skip to the next input record. For
example, if a stream is the input to a parser for program text,
one might want to skip to the next record when a comment symbol
is encountered. Therefore, a primitive to read the next record
is desirable. Of course, if the source of characters is a text
object, end-of-file becomes true after the first read of the next!
record.

-5-

If the source of characters for a stream is an external
file, the attributes echo and log of input file objects have the
same meaning; if the source of characters is a text object, they
have no effect. The divert attribute of input file objects has
the same interpretation for streams independent of the source of
characters.

If a file is viewed as a source of characters, another
generalization immediately suggests itself. At some point in a
file, one might wish to include all of the characters in another
file and then continue reading the original file. Therefore, if
a specific character, called the indirect file character, appears
in the first column of an input record, the remainder of the
record is interpreted as the name of a file and input is read
from this file until end-of-file is encountered. At this point,
input is again taken from the first file. Any number of indirect
files may be in use at any time subject only to the host system
restriction on the maximum number of open files.

Output Files

While using an output file object to write to an external
file a number of user or programmer errors may occur and run time
error recovery to include at least the following is required.

If the file name that is passed to an output file object
when it is created is such that it is not possible to write to
this file then a corrective message is printed on the terminal
and the user is asked to provide the correct file name, possibly
after consulting the directory. This can occur, for example, if
the file name refers to a directory to which the program has
read-only access or if there is no space available for the file.

Error recovery for many attributes of an output file
object is essentially the same as for an input file object. How-
ever, there is one important difference. If there is an attempt
to write an output line that is longer than the buffer associated
with the output file object, the output line is written as a
sequence of output records and no error indication is given.

Output file objects also have an echo attribute which
controls the behavior of the object as follows. If the external
file associated with the output file object is not the terminal,
the echo attribute is meaningful: If echo is true, output
records are written to the external file and to the terminal. If
echo is false, this terminal output is not written. This sub-
stantially simplifies writing programs that record output for
further processing or later examination while also providing a
copy on the terminal to guide the user.

VL-

There is one additional detail of output file objects
that significantly simplifies programs. When output is written
to a file, tab characters are automatically inserted to replace
blanks. This provides for substantially smaller disk files and
for higher speed output on terminals. It is the responsibility
of the host operating system to expand tabs into blanks when
writing to a terminal or other device that lacks hardware tabs.
Again, this removes a significant amount of annoying detai.s from
programs while providing for more efficient use of storage space.

Implementation

The file primitives described here have been implemented
using SIMULA-67 in the VM/CMS operating system. The code con-
sists of approximately 1500 lines of SIMULA of which about 40% is
documentation. This code is written in the Common Base defini-
tion of SIMULA and should also function correctly in the DEC-10
SIMULA implementation.

In the VM/CMS environment, this code is supported by
approximately 500 lines of assembly code and approximately 800
additional lines of SIMULA code. All of this program text
strongly depends on the VM/CMS environment. The assembly code
provides direct terminal input/output bypassing the SIMULA run
time system code which is inadequate in this environment and the
SIMULA code makes it possible to associate CMS DD names with CMS
files at run time and to suppress the details associated with
using DD names.

In addition, this code uses modifications to VM written
by the University Computing Center to support tabs on terminals
as described.

In the DEC-10 environment, approximately 50 lines of sys-
tem dependent SIMULA code would be required to bring the file
system into correct operation.

Approximately one man year was devoted to the design and
implementation of this file system. Since this writer was learn-
ing to use VM/CMS at the same time, some of this effort was sim-
ply education in the obscure details of the system.

)i Evaluation

The file system described here has been incorporated into
two programs: an APL implementation and an interactive program
verification system. Both of these programs were designed and
brought into operation in DEC-10 SIMULA and then transferred to
VM/CMS and IBM SIMULA.

-7-

At the beginning of this program transfer, the programs
were modified incrementally to deal with a variety of problems
that were encountered when using them in the VM/CMS environment.

The APL implementation uses disk files in a very limited
way but makes heavy demands on the terminal interface. After the
file system was implemented, it was incorporated into the APL
implementation and approximately 800 lines of very uninteresting
and fragile code were removed. The revised version is substan-
tially simpler and can be modified easily. In addition, error
recovery appears to be complete.

The interactive program verification system makes heavy
use of disk files and the echoing and logging functions associ-
ated with files. Before the file system was implemented, approx-
imately 1100 lines of code had been introduced to provide margin-
ally acceptable behavior in the VM/CMS environment. All of this
code was removed when the file system was implemented. In addi-
tion, approximately 500 lines of code that was created to provide
some of the echoing and logging capabilities in the DEC-10 envi-
ronment was removed. Again, the resulting program is much
cleaner and simpler and substantially more reliable. In addi-
tion, it is now very easy to make modifications in the user
interface without introducing complicated code.

If these two programs were the only application of this
file system, the development effort would be justified. However,
the file system has also been used to create a variety of other
utility programs that provide some locally useful function and
some programs that were created before the file system was imple-
mented have been revised to use the file system. The revised
programs are substantially smaller than previous versions and the
creation of additional utilities is now a trivial task. Work
that once consumed several days can now be done in an hour or
two.

There are other advantages associated with using this
file system that are much more difficult to document precisely.
Since it is very easy to provide a convenient terminal interface,
one automatically writes programs in this way. The same primi-
tives are used in a variety of programs and this substantially
simplifies program documentation and user training. The code
that depends on specific properties of the operating system is
isolated and well defined and, therefore, moving programs to
another host system is very much easier. Only a limited number
of specific procedures must be rewritten and the external behav-
ior of programs is essentially unchanged. The only change is a
different syntax for file names.

In summary, this file system has been found to be an
extremely useful tool for the development of interactive programs
with minimal attention to the details of input/output. The file
system provides a very comfortable, convenient environment for
program creation.

-8-

I

Acknowledgement

It is a pleasure to thank Richard W. Critz, Jr. for writ-
ing the assembly code that supports this file system in VM/CMS
and for making many constructive suggestions about the design of
the system.

Reference

1. O.-J. Dahl, B. Myhrhaug and K. Nygaard, The SIMULA-67 Common
Base L e Publication No. S-2, Norwegan CompuElng Cen-
ter, OsMo, may 1978.

-9-

